Critical review of energy storage systems Private
2 years ago - Multimedia - San Antonio - 43 views -This review article critically highlights the latest trends in energy storage applications, both cradle and grave. Several energy storage applications along with their possible future prospects have also been discussed in this article. Comparison between these energy storage mediums, as well as their limitations were also thoroughly discussed. Suggestions and solutions in mitigating some of these challenges in order to improve the overall performance of these energy systems have also been analysed in this investigation. In spite of the accelerated growth in home energy storage system, there is still a grave need for further investigations, in order to reduce their costs. Further research activities will reduce the cost of some of these novel technologies, thereby accelerating their commercialization as well as making them better competitors against traditional energy storage mediums.
Energy systems are dynamic and transitional because of alternative energy resources, technological innovations, demand, costs, and environmental consequences. The fossil fuels are the sources of traditional energy generation but has been gradually transitioned to the current innovative technologies with an emphasis on renewable resources like solar, and wind. Despite consistent increases in energy prices, the customers’ demands are escalating rapidly due to an increase in populations, economic development, per capita consumption, supply at remote places, and in static forms for machines and portable devices. The energy storage may allow flexible generation and delivery of stable electricity for meeting demands of customers. The requirements for energy storage will become triple of the present values by 2030 for which very special devices and systems are required. The objective of the current review research is to compare and evaluate the devices and battery energy storage system presently in use and anticipated for the future. The economic and environmental issues as well as challenges and limitations have been elaborated through deep and strong consultation of literature, previous research, reports and journal. The technologies like flow batteries, super capacitors, SMES (Superconducting magnetic energy storage), FES (Flywheel Energy Storage), PHS (Pumped hydro storage), TES (Thermal Energy Storage), CAES (Compressed Air Energy Storage), and HES (Hybrid energy storage) have been discussed. This article may contribute to guide the decision-makers and the practitioners if they want to select the most recent and innovative devices and systems of energy storage for their grids and other associated uses like machines and portable devices. The characteristics, advantages, limitations, costs, and environmental considerations have been compared with the help of tables and demonstrations to ease their final decision and managing the emerging issues. Thus, the outcomes of this review study may prove highly useful for various stakeholders of the energy sector.
The need for energy emerged as soon as human beings learned to cook food, although people were unknowingly benefitting from solar energy to protect their bodies from coldness and drying clothes in the sun etc. The first planned utilization of energy was from wood and fire. However, increasing awareness of nature for taking advantage of energy, various sources of energy were identified and put to versatile uses. People also acquainted to change forms of energy and storing it for the times when sources were not available, for example, solar energy at night, though the ways of conserving energy were very basic like storing wood under shelter and other safe places. However, increased populations and energy usage versatility added other sources like coal, steam, water, wind, and petroleum. The invention of electricity changed the whole scenario of energy.